Cell-based in vitro assays provide a step-up approach in the evaluation of specific functionalities of food ingredients, that could be related to in vivo effects. Our cell culture models target gut and immune health, and in particular the ability of ingredients to affect resistance to infection. Several of these models can be used in combination with exposure to specific pathogens or pathogen, which will give you information on the potential efficacy of the ingredient to protect humans against infection with this or similar pathogens.
Specific cell assays that we offer include:
- Pathogen adhesion to intestinal epithelial cells
(anti-adhesion assay) - Probiotic adhesion to intestinal epithelial cells
- Gut barrier integrity or enforcement (TEER assay)
- Intestinal epithelial signalling (cytokine/chemokine
production) - Pathogen co-aggregation
- Pathogen viability/antimicrobial activity
- Immune assay (using RAW264.7 murine macrophage cell
line or human PBMCs). The pathogens that we mostly work with are E. coli strains (e.g. a typical diarrhoea strain like ETEC H10407) or Salmonella strains. Our unique human E. coli challenge model uses an attenuated E.coli strain (E. coli strain E1392/75-2A) to induce mild and transient gastrointestinal symptoms in healthy volunteers, which is why we prefer to use this, or similar strains, also in our in vitro assays, enhancing the validity of the in vitro – in vivo translation.
Pro- or anti-inflammatory activity can be analysed through a range of cytokines and chemokines produced upon cell stimulation (e.g. IL-8, IP-10, IL-10, TNF-alpha), the panel of which is determined based on the type of assay and the stimulus used in the assay.